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Abstract

A new strategy has been developed to measure cross-correlation rates with much enhanced accuracy. The method relies on the

use of four complementary experiments. Errors due to pulse miscalibration and to uncontrolled attenuation factors associated with

relaxation are cancelled out. Problems due to violations of the secular approximation are greatly alleviated. The method has been

applied to the measurement of N/NH (CSA/DD) cross-correlated relaxation rates in human ubiquitin.

� 2003 Elsevier Science (USA). All rights reserved.

Keywords: Cross-correlation rates; Chemical shift anisotropy; Dipole–dipole interaction

Cross-correlated relaxation rates can provide valu-

able information on structure [1–4], internal dynamics

[5–8], and chemical shift anisotropy (CSA) tensors [8–

11]. Two distinct approaches can be used to determine

cross-correlation rates. In the frequency-domain ap-
proach, the rates can be directly extracted from the peak

heights of different lines in a multiplet, which are in-

versely proportional to their widths. These lines corre-

spond to different operators in a single transition basis,

which relax with different rates under the influence of

cross-correlated relaxation [12]. In a Cartesian product

operator basis on the other hand, cross-correlation can

be described in terms of an interconversion of different
terms in the density operator. This can be exploited in

the time-domain approach, where the rates are obtained

by measuring the decay of an initial operator P and the

build-up of a target operator Q that is created by cross-

correlated relaxation. The ratio between the expectation

values of the two operators is given by [5]

hQiðtÞ
hP iðtÞ ¼ tanhðRCCtÞ; ð1Þ

where RCC is the cross-correlation rate, which can thus
be obtained directly either by measuring the intensities

of the two operators at a single time t ¼ T , or from a so-

called ‘‘build-up curve’’ as a function of t. The time-

domain method allows one to record highly resolved
spectra that are not encumbered by multiplets, and the

method is usually more sensitive than the frequency-

domain approach [13]. Moreover, the time-domain

method is also applicable to the measurement of longi-

tudinal cross-correlation rates [14] and to cases where

the scalar couplings are smaller than the line-widths.

In Fig. 1a, the principle that has been used hitherto

for most time-domain experiments is outlined. In a first
step an initial operator P is excited. In the subsequent

relaxation period T, cross-relaxation leads to a partial

transformation of the initial density operator P into the

target operator Q, while coherent evolution under shifts

and couplings is refocused. At the end of the interval T,

there has been a partial decay of P and a build-up of Q.

Two complementary experiments are then performed. In

experiment A (using the nomenclature of Tjandra et al.
[5]), one detects hQiðT Þ, while hP iðT Þ is observed in ex-
periment B. In order to detect the expectation value

hQiðT Þ, the operator Q is converted into P during the

conversion period MA, using suitable transformations

under scalar couplings and radio frequency (RF) pulses,
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a process that is of course attenuated by relaxation and

pulse errors. Usually an extra compensation interval MB

is inserted in experiment B so that the signals are at-

tenuated in a similar fashion in experiments A and B.

The conversion, compensation and detection blocks can
sometimes be contracted into shorter sequences.

Two problems may arise with this conventional

scheme, which has been used in a wide variety of cross-

correlation experiments in recent years. First, systematic

errors may arise if the auto-relaxation rates of the op-

erators P and Q during the relaxation period T are

different, since this leads to deviations from Eq. (1) [15–

17]. Second, it may be difficult to assess the extent
of losses due to relaxation and pulse errors during

the conversion period MA. In Liouville space, where the

elements of the density operator r expressed in the

Cartesian product operator base are written as a vector,

the efficiency of the conversion can be written as a

product with a non-unitary matrix

rf ¼ MAri; ð2Þ
where ri and rf are the initial and final states of the

density operator before and after the conversion period

MA in experiment A. Using a combination of phase-

cycling and pulsed field gradients, it is usually possible

to start with a pure operator ri ¼ Q at the beginning of

the conversion interval MA, and one can selectively

observe an operator rf ¼ P at the end of this interval, so

that only one element of the matrix MA affects the
outcome of the experiments

hP i ¼ MA
PQhQi; ð3Þ

whereMA
PQ is the element of the matrixM

A that describes

the partial conversion of the operator Q into P (note the

antichronological order of the indices). In principle, one
could calculate such an element, but this requires precise

knowledge of a variety of transverse and longitudinal

relaxation rates, scalar couplings and pulse imperfec-

tions. Often it is more convenient to insert an extra

compensation interval MB in experiment B, without

coherent evolution, designed so that relaxation losses

are very similar to those occurring in the conversion

interval MA of experiment A.
To achieve a more satisfying compensation of sys-

tematic errors, we propose to replace the conventional

pair of experiments {A, B} by a set of four experiments

{I–IV} as shown in Fig. 1b. This scheme will be referred

to as ‘‘symmetrical reconversion.’’ Experiment I is clo-

sely related to experiment B of the previous scheme.

However, in contrast to the interval MB discussed

above, the transformations MI
PP and M I0

PP do not corre-
spond to delays that are long enough for relaxation to

play a role, but only to a selection of the operator P

immediately before and after the relaxation period T.

These selection processes can be represented by matrices

M I and M I0 . Experiment II is almost identical to exper-

iment A in the conventional scheme, except that special

care is taken to select the operator P before the relaxa-

tion period T (transformation M II
PP , which is identical to

M I
PP ) and to convert the operator Q into P after T (non-

unitary transformations M II0

PQ, which is comparable to

MA
PQ in the conventional experiment). Experiment III is

very similar to experiment II, except that the conversion

from P into Q happens before the relaxation time T, a

process which is described by a non-unitary transfor-

mation M III
QP that is related by symmetry to M II0

PQ. In this

case the ‘‘reverse’’ build-up of the operator P starting
with Q is measured in the interval T. Of course, M III0

PP
and M I0

PP are again identical. Finally, experiment IV,

which allows one to measure the auto-relaxation of the

operator Q in the T interval, uses both conversion pe-

riods that are employed in experiments II and III, rep-

resented by M IV
QP that is identical to M III

QP and by M IV0

PQ
that is identical to M II0

PQ. Thus the losses during the se-

lection and conversion periods can be accounted for by
real attenuation factors that need not be determined

experimentally nor evaluated by simulation. In analogy

to Eq. (1)

hP iIIðtÞ
hP iIðtÞ

¼
M II

PPM
II0
PQ

M I
PPM

I0
PP

tanhðRCCtÞ

¼
M I

PPM
II0
PQ

M I
PPM

I0
PP

tanhðRCCtÞ ð4aÞ

Fig. 1. Schemes for the measurement of a cross-correlation rate RCC
that leads to the inter-conversion of two operators P and Q. (a) In the

traditional approach the conversion of P into Q (i.e., the build-up of

Q) is detected in experiment A, while the decay of operator P is

measured in experiment B. In experiment A the operator Q is con-

verted into P by coherent evolution in the conversion interval MA

before detection, while in experiment B an extra compensation interval

MB is usually inserted to achieve an approximate compensation for

relaxation losses during MA. (b) In the novel symmetrical reconversion

approach, a set of four experiments is used: (I) and (IV) to monitor the

decay of the operators P and Q and (II) and (III) to monitor the

conversion from P into Q and vice-versa. Special care needs to be

taken to select the appropriate operators before and after the relaxa-

tion intervals. The losses that occur during the different conversion and

selection intervals precisely cancel out.
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and

hP iIIIðtÞ
hP iIVðtÞ

¼
M III

QPM
III0
PP

M IV
QPM

IV0
PQ

tanhðRCCtÞ ¼
M III

QPM
I0
PP

M III
QPM

II0
PQ

tanhðRCCtÞ:

ð4bÞ
Henceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP iIIðtÞ
hP iIðtÞ

hP iIIIðtÞ
hP iIVðtÞ

s
¼ j tanhðRCCtÞj: ð5Þ

Using Eq. (5) one can obtain the rate RCC independently
of the efficiency of the various selection and conversion

periods. The information about the sign of the rate is

lost, but this can easily be recovered by looking at the

signs of the intensities in the individual experiments.
Since one starts once with the operator Q and once with

the operator P, problems due to differences in auto-re-

laxation rates of these two operators during the relax-

ation period T will also be alleviated (see simulations

below).

The new symmetrical reconversion method can

readily be adapted to measure various CSA/DD and

DD/DD cross-correlation rates. Note that some exper-
iments, in particular those designed to measure CSA/

CSA cross-correlation rates, require two complementary

experiments that only differ in the phases of some of the

RF-pulses, so that they do not suffer from asymmetric

reconversion.

It is useful to compare stochastic errors due to ther-

mal noise in the conventional and in the new symmet-

rical schemes. Let us assume that the losses in the

conversion periods before and after the relaxation in-
terval T are the same, i.e., M II0

PQ � M III
QP ¼ a. The signal

intensity in experiment I is normalised to 1. The fraction

of the coherence that is transformed by cross-correlated

relaxation is defined to be b. Thus the relative intensities
of experiments I, II, III, and IV are equal to 1, ab, ab,
and a2. The intensities in the conventional experiments
A and B, also normalised to experiment I, will be 2ab
and 2a (the factors 2 arise because one has twice as
much time for each experiment). Let r be the stochastic
errors in experiments I–IV divided by the signal intensity

in experiment I. The stochastic errors in experiments A

and B, if they are also divided by the signal intensity in

experiment I, will be
ffiffiffi
2

p
r. Error propagation for the

ratio of Eq. (1) leads to

EAB ¼ r

a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q
; ð6Þ

while for the ratio in Eq. (5) one obtains errors

EI–IV ¼ r

a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2ða2 þ a�2Þ=2

q
: ð7Þ

One can see that the errors are identical for an ideal

conversion (a ¼ 1), but they increase in the new scheme

when a < 1. The difference will only be appreciable
when a < b. The new approach does not depend on the

specific details of the conversion blocks, hence one can

easily optimise the efficiency a of the conversion to

minimise stochastic errors.

Fig. 2. (a) Conventional experiments for the measurement of N=NHN (CSA/DD) cross-correlation rates as proposed by Schwalbe [4], divided into

four blocks according to the scheme of Fig. 1a. (b) Improved version of these experiments according to the symmetrical conversion scheme of Fig. 1b.

Filled and open rectangles correspond to p=2 and p pulses. The wider open rectangles correspond to selective p=2 pulses applied to the H2O res-

onance. All phases are along the x-axis, unless indicated otherwise. The p=2 pulses marked by asterisks are phase-alternated independently while the
signals are added and subtracted. The p pulses marked by an asterisk are switched independently between the x- and y-axes while changing the

receiver sign.

260 Communication / Journal of Magnetic Resonance 161 (2003) 258–264



In order to demonstrate the utility of the new meth-
od, we shall have a closer look at an experiment de-

signed by Tjandra et al. [5] to measure N/NH (CSA/DD)

cross-correlation rates in proteins. In Fig. 2a the con-

ventional experiments A and B proposed by Tjandra et

al. are drawn following the pattern of Fig. 1a. Fig. 2b

shows how the experiments can be adapted according to

the principles of symmetrical reconversion to give four

sequences I–IV. In the conventional sequence of Fig. 2a
the operator 2NyHz is initially created by an INEPT

transfer step combined with three pulsed field gradients.

Experiments I and II of Fig. 2b follow the same proce-

dure, except that the final p=2 pulse of INEPT is delayed
until after two p=2 proton pulses with phases (þx;þx) or
(þx;�x), which amounts to an alternation between p
and 0� pulses. This ensures that only the anti-phase

component (P ¼ 2NyHz) is retained at the beginning of
the interval T. In experiments III and IV the final p=2
nitrogen pulse is again removed from the initial INEPT

sequence, and this is followed by a second INEPT-like

sequence which leads to an in-phase component

(P ¼ Ny) at the beginning of T. A proton p=2 pulse and a
pulsed field gradient destroy any residual anti-phase

terms 2NxHz or 2NyHz at this point. All six schemes of

Fig. 2 use a nitrogen p pulse in the middle of the re-
laxation interval T to refocus coherent evolution. In the

conventional experiment A of Fig. 2a, the interval T is

followed by nitrogen and proton p=2 pulses and by a
gradient pulse, so that only the build-up of the in-phase

term Q ¼ Ny is detected. This term is converted into an

anti-phase term 2NyHz by a subsequent INEPT-like step.

In experiment B the decay of the anti-phase operator

P ¼ 2NyHz is detected. In order to account for the re-
laxation losses that occur in experiment A, a compen-

sation interval MB of duration 2s1 is inserted in B, but
without any proton pulses. In both new experiments I

and III, the operator P ¼ 2NyHz needs to be selected

after the interval T. In order to avoid contamination

with the in-phase term Ny , two proton p=2 pulses (the
second of which is alternated in phase in concert with

the receiver phase) are inserted immediately after the
nitrogen p=2 pulse. The remaining anti-phase operator
2NyHz is then converted back into observable magneti-

zation. In experiments II and IV the in-phase compo-

nent Ny is transformed into an antiphase operator

2NyHz. This occurs in a manner identical to experiment

A. All six schemes of Fig. 2 have identical t1 evolution
intervals where the nitrogen coherence evolves and t2
detection periods where the amide proton magnetization
is observed, in the manner of heteronuclear single-

quantum correlation spectrosocpy (HSQC).

In Fig. 3a simulations are presented in order to

evaluate the validity of Eqs. (1) and (5) as a function of

the relaxation time T. A scalar coupling 1JNH ¼ �93Hz,
a cross-correlation rate RN;NH ¼ 4s�1 and a longitudinal
proton relaxation rate R1H ¼ 5s�1 have been assumed,

as would be expected for a small protein with an iso-

tropic rotational correlation time sc ¼ 4 ns. Using these

parameters for a two-spin system the evolution of

the Liouvillian has been calculated numerically for the

Fig. 3. Numerical simulations to verify the validity of Eqs. (1) and (5).

The dashed lines correspond to simulations of the conventional ex-

periments of Fig. 2a, where the apparent cross-correlation rate RappN;NH

has been obtained using Eq. (1). The bold lines correspond to the

symmetrical conversion scheme of Fig. 2b, where RappN;NH has been

obtained with Eq. (5). In (a) parameters have been used that are typical

for an amide NH system in a protein with a correlation time of 4 ns, a

proton Lamor frequency of 600MHz and a temperature of 300K

(JNH ¼ �93Hz, RN;NH ¼ 4s�1, R1H ¼ 5s�1). In (b), the longitudinal

proton relaxation rate was increased to R1H ¼ 15s�1 to account for
faster chemical exchange or for a longer correlation time (larger pro-

tein), all other parameters being the same. In (c), the scalar coupling

was decreased to JNH ¼ 3Hz to simulate long-range correlations, all

other parameters being as in (a). In all three cases, the relative errors of

RappN;NH do not depend on the rate RN;NH (simulations not shown).
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relaxation periods T of Figs. 2a and b. In the simula-
tions the effects of the nitrogen auto-relaxation rates

cancel out, although in experiments they would lead to a

reduced signal-to-noise ratio. The apparent relaxation

rates RappN;NH that are obtained from Eqs. (1) and (5) are

plotted for different values of T. In the conventional

scheme (dashed lines) deviations as large as 1% can be

seen. In the new scheme (continuous lines) the devia-

tions from Eq. (5) are smaller than 0.01%. When the
longitudinal proton relaxation rate R1H is increased to

15s�1 (Fig. 3b) the maximum deviations increase to 3%

and 0.1% for the conventional and for the new schemes.

A judicious choice of the relaxation time T can reduce

errors in the original scheme [17], however it is difficult

to account for scalar couplings that are unknown and

often not uniform. In the new scheme the relaxation

delay T can be chosen at will. The advantages become
far more dramatic when the scalar coupling is very

small, which occurs for long-distance cross-correlation

effects such as C0=C0HN (CSA/DD), where one must

expect a violation of the secular approximation. Simu-

lations like those of Fig. 3a are shown in Fig. 3c, except

that the scalar coupling was reduced to 3Hz. With the

new scheme, the systematic errors remain below 0.5%

even for relaxation times T as long as 0.14 s, whereas

the conventional scheme leads to errors of more than
30%.

We have applied the new symmetrical sequences to a

sample of 15N labelled human ubiquitin with relaxation

delays T ¼ 40, 80 (twice) and 120ms. In Figs. 4a–c the

rates obtained with Eq. (5) for different T are compared

with the average over all four experiments. (These av-

erages are our best estimates and may be regarded as the

‘‘true’’ values of the rates.) The rates obtained for dif-
ferent relaxation delays T agree remarkably well with

each other. We have also used the conventional se-

quence of Tjandra et al. [5] with approximately the same

parameters as in the original publication with a relaxa-

tion delay T ¼ 46:7ms. As can be seen in Fig. 4d, there
is a systematic deviation of about 4% in this case. There

may be several causes for these deviations. First, the

deviation from Eq. (1) is expected to be nearly at its
worst for T ¼ 46:7ms. Second, there are differences

between the relaxation rates of the relevant operators in

the intervals MA and MB of experiments A and B. Not

only does one have to account for differential relaxation

of longitudinal terms (Nz compared to 2NzHz), but dur-

ing MA the relaxation rate is the average between those

of Ny and 2NxHz, while in MB it is close to the relaxation

rate of 2NyHz. The difference between these relaxation

Fig. 4. (Top row) Experimental rates obtained with the symmetrical reconversion sequences of Fig. 2b applied to a sample of 15N-labelled human

ubiquitin at 300K and a proton Larmor frequency of 600MHz. (a)–(c) Experiments performed with relaxation delays T ¼ 40, 80 and 120ms (a

fourth experiment was performed with T ¼ 80 ms). The experimental cross-correlation rates RappN;NH obtained using Eq. (5) for various residues are

plotted against the rates averaged over all four measurements. A number of 32 scans per t1 increment were taken in each of the four experiments (I–
IV), resulting in a total experimental time of 13 hours for each delay T. (d) Conventional experiments (A, B) of Fig. 2a recorded under the same

conditions as in (a)–(c) with a relaxation delay T ¼ 46:7ms and 64 scans per t1 increment for each experiment A and B, plotted against the same

average rates used along the abcissae in the top row. (e) Same as (b) but with shorter delays 2s1 ¼ 3ms instead of 5.3ms in the conversion blocks. (f)

Same as (b) but with all proton pulses shortened by 20%. Experiments I–IV and A–B have been recorded in an interleaved manner for each T value.
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rates is, to a good approximation, given by the longi-
tudinal proton relaxation rate R1H. With a rate

R1H ¼ 5s�1 this can lead to a deviation of more than 1%
in the ratio between the two intensities. A third source of

error lies in the preparation part of the conventional

experiments A and B: a long gradient has been applied

between the first INEPT step and the relaxation period

T. During this period longitudinal cross-correlated re-

laxation takes place. For a protein with a rotational
correlation time of 4 ns at 600MHz this rate is about

20% of the transverse relaxation rate. The resulting error

depends on the duration of the gradient and subsequent

recovery period and on the relaxation time T. In the

experiment of Fig. 4d the duration of the gradient and

recovery period was about 5 ms, which leads to a devi-

ation of about 2% for T ¼ 46:7ms. All of these effects
lead to an increase of the apparent rates. By contrast,
two other factors may lead to an decrease of the ap-

parent rates. Proton pulse imperfections lead to an in-

complete inversion of the protons in scheme A, unless

composite pulses were used. Furthermore, cross-corre-

lated relaxation has different effects during the conver-

sion and compensation periods in schemes A and B. In

scheme A the cross-correlation rate is averaged out by

the proton p pulse, while in scheme B it is not. The re-
sulting asymmetry will be exacerbated by the fact that

no care has been taken to select the anti-phase operator

after the relaxation period T so that the in-phase oper-

ator might contribute to the signal intensities (especially

for longer relaxation times T). The original sequence

could be improved by introducing the two selection

blocks with two nitrogen pulses as in the new scheme I.

Also the relaxation time T could be chosen in such a way
that the averaging of the in- and anti-phase relaxation

rates occurs over both relaxation and conversion peri-

ods. However this might be difficult to achieve when the

J couplings are not uniform. Extra pulses might intro-

duce additional errors due to their imperfections. In the

new scheme errors due to pulse imperfections will simply

cancel out.

In order to test the robustness of the scheme we have
repeated the experiment at 80ms but with delays

2s1 ¼ 3ms instead of 5.3ms during the conversion

blocks. A delay of 2s1 ¼ 3ms corresponds to an opti-

mum for a scalar coupling of 167Hz instead of 93Hz.

The transfer efficiency drops by a factor of about 0.7. As

can be seen from Fig. 4e this does not lead to any sys-

tematic deviations of the apparent rates. The precision

of the rates, as reflected in the standard deviation, has
decreased somewhat because of signal losses during the

conversion periods. In another experiment we deliber-

ately miss-calibrated all proton pulses by 20% (using

9 ls instead of 11.0 ls for p=2 pulses, and 18 ls instead
of 22.0 ls for p pulses). The systematic errors remain

small (Fig. 4f) although stochastic errors increase con-

siderably due to a significant degradation of the signal-

to-noise ratio. Note that the suppression of anti-phase
terms by proton pulses that deviate from p=2 is not

perfect, so that the conditions of symmetrical recon-

version are not properly fulfilled in this case, but even

with such large calibration errors the systematic errors

remain small. With normal precautions to calibrate the

pulse widths or by using composite p=2 pulses, the sys-
tematic errors can be safely neglected.

In conclusion, we have developed a new principle for
the measurement of cross-correlation rates with en-

hanced accuracy. The method relies on four comple-

mentary experiments designed so that the ratios of

signal intensities are largely independent of experimental

parameters. Problems due to violations of the secular

approximation are greatly alleviated. The sensitivity is

similar to conventional approaches.
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